
Your Laptop is not a Bop-It!
Leveraging the Power of Your Keyboard to

Improve the Developer Experience

Geoff Cureton

 @gpcureton@mstdn.social

https://codeberg.org/gpcureton

https://bopit.fandom.com/wiki/Bop_It_Extreme 2

Overview
● My Origin Story
● Minimising Cognitive Load

○ Economy of Movement
○ Economy of Search

● Questions

3

Part I: My Origin Story

4

My Origin Story
● Undergrad in Physics (‘94 - ‘96)

○ Windows 3.1

○ MS Word / Excel

○ Mouse Centered Workflow

○ Floppy Disks

5

West Nevada Community College, 199? 6

My Origin Story
● Undergrad in Physics (‘94 - ‘96)

○ Windows 3.1

○ MS Word / Excel

○ Mouse Centered Workflow

○ Floppy Disks

● Honours Year (1997): When I Try To Get Serious…

7

8

… but then I met this guy…

9

… who “ruined” my life by introducing me to LaTeX 😵

10

But seriously… why was exposure to LaTeX significant?

● It introduced me to the idea that a visual element and its
representation/implementation can be decoupled (like HTML, Markdown…)

11

But seriously… why was exposure to LaTeX significant?

● It introduced me to the idea that a visual element and its
representation/implementation can be decoupled (like HTML, Markdown…)

● Also…

12

But seriously… why was exposure to LaTeX significant?

● It introduced me to the idea that a visual element and its
representation/implementation can be decoupled (like HTML, Markdown…)

● Also… LaTeX is cool.

13

But Also…
● I ran my LaTeX “distribution” em-TeX using a little GUI called “emTeXGI”.
● Sadly, emTeXGI has been memory–holed; no images of it remain, but it looked

something like this…

14

But Also…
● I ran my LaTeX “distribution” em-TeX using a little GUI called “emTeXGI”.
● Sadly, emTeXGI has been memory–holed; no images of it remain, but it looked

something like this…

● Alt-Tab between GUI and source
● Tab between “Save”, “Compile”

● I became irate when I couldn’t

do this.
15

The Interregnum
● Eventually I went to grad school, and intermittently used Vim (oooh,

foreshadowing!), but not in a serious way.
● Various jobs required me to use Windows, Visual Studio.NET, and other mousey

things.
● This situation persisted for good while, punctuated by my occasional insistence on

using LaTeX to make presentations (I’m cured of that), and conference posters (of
which I’m still afflicted).

● Then came…

16

The Pandemic!

17

The Pandemic
● While I had tinkered around with keyboard-based workflows previously, I hadn’t

seriously put any time into it.

● By the middle of 2020, I found that I was spending a lot more time on my

computer (for good or ill), and was itching to do something different.

● A few diversions started to take a more important role:
○ Coding YouTubers

○ Coding YouTubers who use Vim

○ Mechanical Keyboards

● Combining these interests led me to…

18

Part II: Minimizing Cognitive Load

19

Minimizing Cognitive Load
● Reducing behaviours and actions which interrupt your current task. People are

bad multitaskers. They just are.
● The things I do to streamline my workflow fall into two broad categories:

○ Economy of Movement

○ Economy of Search

20

Economy of Movement
● This is where the concept of the Bop-It comes in: you will be more effective if you

are not flailing away at your keyboard. Or between the keyboard and mouse.
● Use your mouse when you need to, and your keyboard when you don’t
● For just the keyboard, economy of movement can be achieved either…

● Hardware (keyboards)

21

Economy of Movement
● This is where the concept of the Bop-It comes in: you will be more effective if you

are not flailing away at your keyboard. Or between the keyboard and mouse.
● Use your mouse when you need to, and your keyboard when you don’t
● For just the keyboard, economy of movement can be achieved either…

● Or Software (key-mappings)

22

Keyboards
● I don’t get too invested in the notion of and “ergonomic” keyboard. I’m sure it’s a

thing, but 🤷
● Split keyboards (as on the previous slides) are fine, but a good layout can be just

as good.
● My most used keyboard…

23

Keyboards
● I don’t get too invested in the notion of and “ergonomic” keyboard. I’m sure it’s a

thing, but 🤷
● Split keyboards (as on the previous slides) are fine, but a good layout can be just

as good.
● My most used keyboard…

24

Keyboards
● Orthocolumnar! (keys are in vertical rows, not staggered)
● This is a 40% keyboard (w.r.t. a full-size keyboard’s number of keys)
● How do we cram all the functionality we want into such a small size…

25

Keyboards
● Orthocolumnar! (keys are in vertical rows, not staggered)
● This is a 40% keyboard (w.r.t. a full-size keyboard’s number of keys)
● How do we cram all the functionality we want into such a small size…
● LAYERS!

26

Keyboards
● You already use layers: the SHIFT key takes you to the “CAPS and SYMBOLS”

layer.
● This keyboard has layer “raise” and “lower” keys either side of the space bar.
● LED lighting of the keys are used as a visual cue

27

Keyboards
● The “lower” layer converts the top row to the usual symbols you’d find along the

top of a keyboard
● The “< > ⬇⬆” keys are Line start/end, Page down/up respectively.
● “hjkl” are left/down/up/right respectively (more foreshadowing!)

28

Keyboards
● The “raise” layer converts the top row to the usual numbers.
● Makes an upside-down keypad: QWEASDZXCV➡ 1-9,0
● “Keypad” is purple, as a visual cue

29

Keyboards
● Both layer keys simultaneously activates the “parenthesis” layer
● “RU”, “FJ” and “VM” give the “()”, “[]” and “{}” pairs respectively. Note the

symmetry…
● “D” and “K” give “^” and “$” (IYKYK)

30

Hot Keys
● Sometimes you don’t have your fancy programmable keyboard with you, what do

you do then? Hotkey daemons!
● Sxhkd (https://github.com/baskerville/sxhkd), Linux
● Kanata (https://github.com/jtroo/kanata), Linux
● Skhd (https://github.com/asmvik/skhd), MacOS

31

https://github.com/baskerville/sxhkd
https://github.com/jtroo/kanata
https://github.com/asmvik/skhd

Hot Keys
● Key mapping daemons are generally used to create mappings which are

independent of the OS or desktop environment being used
● In the example below, the laptop media keys are being mapped to a particular

audio mixer app.

32

Web Browsing
● Navigating to links on a webpage might seem like “search”, but you already have

to find the link with your eyes, so it’s just movement.

33

Web Browsing
● Navigating to links on a webpage might seem like “search”, but you already have

to find the link with your eyes, so it’s just movement.
● Shown below is “Qutebrower”, “f” for “find” brings up key combinations to select

the various links. Note that each of the character pairs have either characters
accessible from either hand, or by a comfortable rolling motion of the same hand.
No awkward stretches.

34

Economy of Search

● Optimizing the process of searching can also be thought of as optimizing
navigation: if we’re looking for something, we’d rather be able to teleport there
rather than walk.

● We can be searching for a particular string in a text file, or a workspace on our
desktop, with the aim of going there

● Rather than inspecting a large list/table to find the thing we want (and clicking on
it), it is preferable to type a few characters to zero in on what we want.

35

Fuzzy Finders

● The notion of “fuzzy finding” can be applied to a range of different contexts:
○ finding the app you want to load
○ finding a file on your file system
○ finding a string in a text file

● The utility of fuzzy finding depends on at least having some idea of what you are
looking for, i.e.: part of the name

● There are some instances where a text-based search my be slower that just using
your Mark-1 Eyeball to directly find the thing: they will be discussed as we get to
them

36

FZF (https://github.com/junegunn/fzf)
● A fuzzy finder for your command line
● Can search your command history, or for a file on your filesystem (and many

things besides).
● CTRL-R and CTRL-T give history and filesystem fuzzy finding respectively

37

television (https://github.com/alexpasmantier/television)
● “A very fast, portable and hackable fuzzy finder for the terminal.”
● Can search filesystem, code, processes, git repos, env vars, docker containers…

38

Telescope (https://github.com/nvim-telescope/telescope.nvim)
● The first general-purpose fuzzy finder plugin for NeoVim.
● You could add your own finders (say, for your Markdown notes)

39

LazyVim (https://www.lazyvim.org/)
● A NeoVim “distribution” which provides a range of different search modes….

40

LazyVim (https://www.lazyvim.org/)
● Files

41

LazyVim (https://www.lazyvim.org/)
● Buffers

42

LazyVim (https://www.lazyvim.org/)
● Search within current buffer

43

LazyVim (https://www.lazyvim.org/)
● Grep files in CWD (with ripgrep!)

44

Harpoon (https://github.com/ThePrimeagen/harpoon)
● When working in a large codebase, it’s common to need to jump back and forth

between one of a few points (say, a function usage and its definition)
● Harpoon is predicated on the idea that people cannot meaningfully use more than

several points of context at a time.
● Each of those points can be made easily accessible using a hotkey: <something>-1,

<something>-2 etc…
● Using these limited number of mappings, one can rapidly navigate code relevant

to a task. As the task changes, so do the mappings.
● This workflow is an alternative to trying to have all of your context on screen at

once… bigger monitors!, more monitors!

45

Application Pickers
● Beats navigating down a menu tree!

46

Miscellaneous

● There are some parts of my workflow that don’t fit neatly a particular category.

● I’ll just go through them and discuss why I find them useful

47

Vim / NeoVim / Emacs + TMUX
● A text editor with useful keybinds to navigate between the various elements

(buffers, windows, dialogs, …)
● Many editors outside of the main TUI based ones have plugins to replicate their

behavior (VS Code - VIM keybinds)
● A terminal-based editor can be run “locally” on a remote server (inside a

Screen/TMUX/Zellij session), you can log out, go home, and pick up where you
left off.

48

Vim / NeoVim / Emacs + TMUX

49

Vim / NeoVim / Emacs + TMUX

50

Tiling Window Managers
● Outside of my text editor (NeoVim), I try to manage my various desktop tasks in

the same way as my editor: using the keyboard.
● The long-standing mode for app management is app-per-window, so how do I

manage my windows?
● My preferred method is to use a tiling window manager, which manages where

and how windows are drawn on the screen, so that the windows don’t overlap.
● This allows the user to efficiently move windows around using screen, and

between virtual desktops, using the keyboard.
● My preferred TWM is Qtile, written in python (https://pawamoy.github.io/qtile/)

51

52

53

54

55

56

57

Thank you!

58

